Quadratic reformulations of nonlinear binary optimization problems
نویسندگان
چکیده
Very large nonlinear unconstrained binary optimization problems arise in a broad array of applications. Several exact or heuristic techniques have proved quite successful for solving many of these problems when the objective function is a quadratic polynomial. However, no similarly efficient methods are available for the higher degree case. Since high degree objectives are becoming increasingly important in certain application areas, such as computer vision, various techniques have been recently developed to reduce the general case to the quadratic one, at the cost of increasing the number of variables by introducing additional auxiliary variables. In this paper we initiate a systematic study of these quadratization approaches. We provide tight lower and upper bounds on the number of auxiliary variables needed in the worstcase for general objective functions, for bounded-degree functions, and for a restricted class of quadratizations. Our upper bounds are constructive, thus yielding new quadratization procedures. Finally, we completely characterize all “minimal” quadratizations of negative monomials.
منابع مشابه
Solving Chance-Constrained Optimization Problems with Stochastic Quadratic Inequalities
We study a complex class of stochastic programming problems involving a joint chance constraint with random technology matrix and stochastic quadratic inequalities. We present a basic mixedinteger nonlinear reformulation based on Boolean modeling and derive several variants of it. We present detailed empirical results comparing the various reformulations and several easy to implement algorithmi...
متن کاملDantzig Wolfe decomposition and objective function convexification for binary quadratic problems: the cardinality constrained quadratic knapsack case
The purpose of this paper is to provide strong reformulations for binary quadratic problems. We propose a first methodological analysis on a family of reformulations combining Dantzig-Wolfe decomposition and Quadratic Convex Reformulation principles. As a representative case study, we apply them to a cardinality constrained quadratic knapsack problem, providing extensive experimental insights. ...
متن کاملNecessary and sufficient global optimality conditions for NLP reformulations of linear SDP problems
In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.
متن کاملInner Approximations of Completely Positive Reformulations of Mixed Binary Quadratic Optimization Problems: A Unified Analysis∗
August 24, 2015 Abstract Every quadratic optimization problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely posit...
متن کاملExploiting Second-Order Cone Structure for Global Optimization
Identifying and exploiting classes of nonconvex constraints whose feasible region is convex after branching can reduce the time to compute global solutions for nonlinear optimization problems. We develop techniques for identifying quadratic and nonlinear constraints whose feasible region can be represented as the union of a finite number of second-order cones, and we provide necessary and suffi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 162 شماره
صفحات -
تاریخ انتشار 2017